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COMMENT 

Scaling theory for dynamic density profile at criticality 

Paul M Shandt 
Department of Physics, University of the West Indies, Mona, Kingston 7, Jamaica, 
West lndies 

Received 5 August 1986 

Abstract. A scaling description for the (dynamic) density profile of kinetic clusters formed 
by the sites visited during random walks executed on critical percolation clusters is proposed. 
The analysis is done for both Euclidean and fractal spaces. Various percolative diffusion 
laws are correctly recovered from this dynamic density profile. 

1. Introduction 

The subject of percolative diffusion has stimulated much interest recently. Many 
ramifications of the original ‘ant in the labyrinth’ problem [ 1 J have been discussed at 
length both theoretically and ‘experimentally’ (by Monte Carlo methods) in the 
literature. In particular, the fractal description of percolation clusters [2] has led to 
the definition and evaluation of such intrinsic exponents as the fractal dimensionality 
D, the diffusion exponent d ,  (fractal dimensionality of the walk) and the fractal 
dimensionality df (density of states exponent). Most investigations have been done 
for diffusion at the percolation threshold where an anomalous diffusion exponent is 
obtained as a result of the fractal nature of critical percolation clusters [3,4]. 

The usual procedure involves carrying out random walks on various clusters and 
measuring the average diffusion length R after time t. One finds that 

R d - K  t (1) 
where the diffusion exponent d ,  depends on the type of average taken for R, e.g. over 
single clusters containing s sites [3] or over clusters of all sizes [ 5 ] .  

Instead of looking at the diffusion length, one can look at the density profile of 
the random walk. The density profile of a static s cluster is defined as [6, 71 the 
probability that a site at position r relative to the cluster centre of mass belongs to 
that cluster. We may define in a similar way a dynamic density profile (DDP) of the 
kinetic cluster [8] formed by the sites visited by a random walker on an s cluster as 
the probability that a site at a distance r from the centre of mass of the kinetic cluster 
has been visited after time t .  These density profiles (static and dynamic) may be defined 
with respect to either the embedding Euclidean space of dimensionality d or the fractal 
space of dimensionality D occupied by the clusters themselves. 

This comment presents a scaling theory for the DDP of s clusters and the infinite 
cluster at the percolation threshold and also looks at the behaviour of the DDP when 
defined with respect to the different spaces. Distances as before are measured as 
Euclidean lengths. 
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2. Scaling theory for static clusters at criticality 

Essential to the formulation of a scaling theory for the DDP is the scaling behaviour 
of the density profile D s ( r )  for critical s clusters. The scaling form is given as [ 9 ]  

Ds(r) OC R s )  (2) 

with DE the scaling function in Euclidean space and R ,  the average radius of the s 
cluster. Integration of (2) over Euclidean space gives the cluster mass s. 

Alternatively, we may take the finite fractal space formed by the cluster as the 
defining space and since only occupied sites constitute this space, we obtain the simple 
relation 

D s ( r ) = D F = l ( V s a n d r )  (3 )  

where DF is the invariant density in the fractal cluster space. Trivially, the product of 
DF and the fractal volume of a cluster gives the cluster mass s. The value of the 
exponent x in (2) was predicted to be a-' (6  is the usual critical exponent of percolation 
theory) by Stauffer [9] and this value was confirmed (for large enough s )  by Herrmann 
[lo] using Monte Carlo data. 

3. Scaling theory for DDP in Euclidean space 

3.1. Scaling theory 

For random walks executed on critical s clusters we propose the following scaling 
form for the DDP: 

D s ( r j  f e f E ( r / R ,  t / s " )  (40 1 

D,(r,  t)OCtagE(r/tY, tis"). (4b) 

or equivalently 

The exponent y in (46) is simply the reciprocal of d ,  as seen from ( 1 ) .  The exponents 
a and U will be determined from scaling arguments. 

As t + 00, the DDP reduces to the static density profile Os( r )  since all the cluster 
sites would have been visited. Therefore the scaling function fE will have the form 

f E (  r / R ,  Z )  = ZX'"DE( r /  R )  Z + c O  ( 5 )  
where z = t i s " ,  in order for the correct static density behaviour to be obtained in the 
limit of large z. (We also have that R + R, after long times.) In addition, in order that 
the time dependence of the DDP be eliminated, the relation x / u  = -a must hold. 
Furthermore, we note from diffusion length scaling [8, 111  that the time t should scale 
as the characteristic time for diffusion on an  average s cluster. This immediately gives 
the exponent U as [5] 

u = d , / D = 2 / d f .  ( 6 )  

Ds(r, t ) K  t - k f E ( r / R ,  tis") (7a)  

Finally we can rewrite (4a)  as 

and  (46) as 

Ds(r, t ) a C k g E ( r / t y ,  r / s " )  
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where k = D/6d,  (= dr/26). The scaling law given by ( 7 )  is expected to hold better 
for large s [lo]. 

We can easily obtain the scaling behaviour of the DDP for walks on the infinite 
cluster at the threshold. Here, one simply takes the limit S + C O  whence we obtain, 
using ( 7 6 ) ,  

D d r ,  t)a f-kgE(r/fY, 0) 

or 

DE( r, t )  a f-khE( r/ rY)  (8) 

This of course is exactly the behaviour of the DDP for s clusters when tc< s"  since at 
these times the presence of the cluster boundary does not affect particle diffusion; 
self-similarity [ 12,131 also precludes s dependence in this regime. 

3.2. Some properties of Ddr, t )  

In addition to those mentioned at the end of the last section, some other properties 
are worth mentioning. Firstly, from the definition of the DDP, it is clear that at t = 0 
(diffusing particle at origin), Os(*, t )  is simply a delta function, i.e. 

Ds(r, 0 )  = S(r) .  (9) 

Thus Ds(r, t )  evolves from a delta function at t = 0 to the static density profiles D,( r )  
in the limit of long times. 

Secondly, the number of distinct sites visited as a function of time, S ( t ) ,  is given 
by the integral of Ds(r, t )  over (Euclidean) space. Stauffer [8] has given the scaling 
form of S ( r )  as 

s(t) = t l / U V ( t / s U )  (10) 

where V is a scaling function and the exponent U was previously given in ( 6 ) .  As 
stated above, 

S ( t )  = Ds(r, t )  ddr. ( 1 1 )  

Substituting the proposed form for Ds(r, t )  given by (76) in (11) we get (neglecting 
constant factors) 

S ( t > =  t - k  J gE(r/tY, t /su)rd- '  d r  

in d-dimensional Euclidean space. Now, from cluster radius scaling and hyperscaling 
~91,  
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where U, p and v are critical exponents of percolation theory [9]. Using (13)  along 
with the scaling law U = l /pS [9], (12) becomes 

S ( t )  = t D ' d w V ( t / s U )  (14) 

where 

V ( f / S " ) =  gE(q, f / S u ) q d - '  dq. ( 1 5 )  I 
Clearly, (14) reduces to (10) by using (6). 

using (6) 
Of course, for the infinite cluster the scaling function V is a constant and we obtain, 

s(t)a t d J 2  (16) 

which is the familiar percolative diffusion law [ 141. 
The average 'radial extension' A ( t )  [ 151 of the kinetic cluster is defined by 

A ( t ) = -  Ds(r, t ) r  ddr. 
S (  ' I  t )  

(17 )  

This integration is easily performed and we obtain for the infinite cluster or in the 
t<c s' regime 

A ( t ) a  t ' I d w  (18) 

as expected (see (1)). 
In concluding this section we note that, so far, the DDP has been defined with 

respect to the centre of mass of the kinetic cluster. If the centre of mass is replaced 
in the definition by the origin of the walk, the basic form of the DDP (i.e. scaling 
function and time-dependent prefactor) will not change. In fact, the prefactor is 
identical in both cases since the correct time dependences of such quantities as S ( t )  
and A ( t )  must be recovered with space integration. The scaling function will however 
change its functional form, so that if p is the position relative to the origin of the walk, 
the DDP can be written as 

Q(P,  t ) ~ t - k F E ( P / R  tis") (19) 

where FE is a different function of the two scaled variables than the one given in (7a). 
(If the origin is chosen randomly, it is expected that the scaling functions FE and fE 

will have the same form apart from constants.) 

4. Scaling theory in the fractal space 

It is interesting to look at the scaling form of the DDP when it is defined with respect 
to the intrinsic fractal space occupied by critical clusters. We assume a similar form 
to the Euclidean counterpart: 

D,F(r, t )atwg,(r/tY,  t / s U )  (20) 
where the designator F refers to the fractal space and w is an exponent to be determined. 
Applying the same scaling arguments as before and noting that in the long time limit 
(20) must reduce to (3 ) ,  it is found that w = 0 and (20) becomes 

D F ( r ,  t ) = g F ( r / t y ,  t / S U ) = f F ( r / &  t / S u ) *  (21) 
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Equation (21) shows that the DDP at r = R is a constant for the infinite cluster or 
in the t << s" regime, i.e. 

D , F ( R )  = constant ( s + w o r  t<< s"). (22) 

This equation of course holds for diffusion in a Cartesian continuum (cf [16, p 2291). 
Furthermore, the DDP in fractal space must exhibit the same properties as its Euclidean 
counterpart, as discussed in the previous section. In particular, by integrating the 
proposed form of the DDP given by (21) over the fractal space we regain the time 
dependence of the number of distinct sites visited by the random walker S (  t ) :  

S ( t )  = Ds(r, t )  dDr. 

If p (distance from the origin of the 
DDP, (23) becomes 

I (23) 

walk) is used instead of r in the definition of the 

Now, the probability P(p, t )  that the random walker is at position p at time t is 
assumed for the infinite cluster to have the form [15, 171 

P(P, t ) a R - D f ( P I R ) .  (25) 

It is easily seen from ( l ) ,  (16) and (24) that P ( p ,  t )  is the properly normalised DDP in 
the fractal space. 

Summarising, we have proposed a scaling theory for the density profile of kinetic 
clusters at criticality in Euclidean and fractal spaces. It was then shown how this 
proposed dynamic density profile correctly reproduces the various well known percola- 
tive diffusion laws. 
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